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recollection of part I & II

• deformation/velocity gradient 
characterizes local (at material 
point) change/rate of change 
of shape and size

• material point model 
connects stress (response) to 
strain (boundary cond.)

• finite strain plasticity 
introduces multiplicative 
decomposition with 
intermediate configuration

• solution of elastic/plastic strain 
partitioning requires Lp from 
constitutive model

S(τ) Lp(τ)

Fp(τ)F∗(τ)

F∗ = FFp−1

Ḟp = Lp FpS =
1
2

C : E

material 
constitutive 

law



recollection of part I & II

check out the source code...

crystallite.f90
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PART III

Monocrystal Plasticity Models



dislocation slip

from www.msm.cam.ac.uk/doitpoms

http://www.msm.cam.ac.uk
http://www.msm.cam.ac.uk


dislocation slip

from www.msm.cam.ac.uk/doitpoms

reason for plane rotation?

http://www.msm.cam.ac.uk
http://www.msm.cam.ac.uk


slip systems in face centered cubic structure

n

b



shear from slip

h

l

dl

b

dγ

dγ =
b dl

h l

=
b dA

V



plastic velocity gradient

Lp = (Lp)ij

=
∂ẋi

∂xj

=
∑

α

γ̇(α)b(α) ⊗ n(α)



resolved shear stress

from www.msm.cam.ac.uk/doitpoms

uniaxial

τ (α) = σ cos φ(α) cos λ(α)

http://www.msm.cam.ac.uk
http://www.msm.cam.ac.uk


resolved shear stress

from www.msm.cam.ac.uk/doitpoms

τ (α) = S : (b(α) ⊗ n(α))

uniaxial

general

τ (α) = σ cos φ(α) cos λ(α)

http://www.msm.cam.ac.uk
http://www.msm.cam.ac.uk


room-temperature deformation resistance in fcc metals

ε

σ

ε̇

• low strain-rate sensitivity

• largely monotonic decrease 
in strain hardening 
coefficient



phenomenological description

γ̇(α) = γ̇0

∣∣∣∣
τ (α)

τ (α)
c

∣∣∣∣
n

sign τ (α)deformation kinetics

microstructure evolution τ̇ (α)
c =

∑

β

qαβ h0

(
1− τ (β)

c

τs

)a

γ̇(β)



phenomenological description

drawbacks

• independent of temperature

• independent of strain path

• independent of grain size



dislocation density-based description

basis
γ̇ =

b Ȧ

V

= b
"

V
ẇ

= b #m v

issues

• parameterization of 
microstructure

• velocity of dislocations

• evolution of microstructure



dislocation structure parameterization (following Ma & Roters 2004)

density on each system

!(α) with α = 1, . . . , 12



dislocation structure parameterization (following Ma & Roters 2004)

projected perpendicular density

!(α)
⊥ =

1
2

∑

β

!(β)
[
|n(α) · (n(β) × b(β))| + |n(α) · b(β)|

]



dislocation structure parameterization (following Ma & Roters 2004)

projected parallel density

!(α)
‖ =

1
2

∑

β

!(β)
[
‖n(α) × (n(β) × b(β))‖+ ‖n(α) × b(β)‖

]



dislocation structure parameterization (following Ma & Roters 2004)

derived mobile density

∂τ (α)

∂#(α)
m

= 0

⇒ #(α)
m ∝

√
#(α)
‖ #(α)

⊥



dislocation structure parameterization (following Eisenlohr & Blum 2005)

(specific) dipole density



dislocation structure parameterization (following Eisenlohr & Blum 2005)

(specific) dipole density



dislocation structure parameterization (following Eisenlohr & Blum 2005)

(specific) dipole density



dislocation structure parameterization (following Eisenlohr & Blum 2005)

(specific) dipole density

!(α)
dip with α = 1, . . . , 12

χ(α) ≡
∂#(α)

dip

∂h
with α = 1, . . . , 12

!(α)
sgl with α = 1, . . . , 12

hspon < h < ĥ(α) ≡ 1
8π(1− ν)

G b

τ (α)



dislocation–forest interaction

from zig.onera.fr



dislocation–forest interaction

from zig.onera.fr



dislocation velocity

thermally activated forest cutting

v(α) = λ(α)νattack sign
(
τ (α)

)
×

exp
(
−Qslip

kBT

)
sinh

(
τ (α)
eff V (α)

kBT

)

!

∆x



dislocation velocity

thermally activated forest cutting

V (α) = b !∆x

v(α) = λ(α)νattack sign
(
τ (α)

)
×

exp
(
−Qslip

kBT

)
sinh

(
τ (α)
eff V (α)

kBT

)

!

∆x



dislocation velocity

thermally activated forest cutting

V (α) = b !∆x

v(α) = λ(α)νattack sign
(
τ (α)

)
×

exp
(
−Qslip

kBT

)
sinh

(
τ (α)
eff V (α)

kBT

)

!

∆x

! ∝
(
"(α)
⊥

)−0.5



dislocation velocity

thermally activated forest cutting

v(α) = λ(α)νattack sign
(
τ (α)

)
×

exp
(
−Qslip

kBT

)
sinh

(
τ (α)
eff V (α)

kBT

)

!

∆x



dislocation velocity

thermally activated forest cutting

v(α) = λ(α)νattack sign
(
τ (α)

)
×

exp
(
−Qslip

kBT

)
sinh

(
τ (α)
eff V (α)

kBT

)

!

∆x

τ (α)
eff = |τ (α)|− τ (α)

pass

=

{
|τ (α)|− c3 G b

√
"(α)
‖ + "(α)

m if |τ (α)| > τ (α)
pass

0 otherwise



dislocation structure evolution
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of χ follows:2

χ̇ = 2γ̇

bNg









dipole formation
︷︸︸︷

#sgl +

exchange of constituents
︷ ︸︸ ︷
∫ ĥ

h
χ dh′ − χh −

dipole decompostion
︷ ︸︸ ︷

χh

(
1

1− 0.9h/ĥ
− 1

)









+ 2vcχ

h

(
∂(ln χ)

∂(ln h)
− 1

)

︸ ︷︷ ︸

climb of constituents

. (6)

The corresponding evolution of the density of single disloca-

tions is given by

#̇sgl =
2γ̇

b Ng









dislocation generation
︷︸︸︷

Ng

2Λ
−

dipole formation
︷︸︸︷

ĥ#sgl +

dipole decomposition
︷ ︸︸ ︷
∫ ĥ

hspon

χh

(
1

1− 0.9h/ĥ
− 1

)

dh









(7)

with dislocation generation being described by the ratioΛ of

slipped area per generated dislocation length,

Λ = kΛ#−0.5
tot (8)

which is assumed proportional to the mean dislocation spac-

ing (kΛ: fitting constant).

In order to track the evolution of χ numerically, the dis-

tribution of dipole heights h is discretized into Ndip intervals

subdividing the range of dipole stability (Eq. (4)) evenly on a

logarithmic scale. For each interval i∈ [1; Ndip], the specific
density χi is set constant in between the respective lower (l)

and upper (u) bounds:

hli = hspon

(

ĥ

hspon

) i−1
Ndip

= hsponδ
i−1
Ndip (9a)

hui = hspon

(

ĥ

hspon

) i
Ndip

= hsponδ
i

Ndip . (9b)

The discretized forms of Eqs. (6) and (7) necessary for nu-

merical calculations are given in Appendix A.

2.2. Dislocation kinetics

The expressions for the velocities of dislocation climb and

glide were derived in detail in [13]. The average climb ve-

locity of extended dipole constituents [14] within the height

interval i results as

vc = A′

2π(1− ν)

[

exp

(

−Gb3/10

kBT

)

+ 2
Ng − 1

Ng
Λb#tot

]

× γ2SFDSD

GkBT

b

hui − hli
ln δ (10)

where A′ is the order 103, γSF the stacking-fault energy, and
DSD is the coefficient of self-diffusion. The term in square

2 Damping factor of 0.9 for dipole decomposition was introduced to avoid

singularity.

brackets represents the line concentration of jogs along a dis-

location as sum of the concentrations of thermal jogs and

of jogs resulting from dislocation intersections. The aver-

age velocity vg of gliding dislocations is based on the ther-

mally activated passage of obstacles posed by the dislocation

forest:

vg = νg
)20
)
exp

(

−*G0

kBT

)

×
{

exp

[
τ∗b)*x

kBT

]

− exp

[
τ∗b

kBT

]

()*x − )20)

}

(11)

where νg is the attempt frequency, *G0 the activa-

tion energy, *x the width of thermal obstacle, )20 =
[(#sgl + #dip/2)(Ng − 1)/Ng]

−1 the average slipped area per

thermal obstacle, and ) = )0(Gb/τ∗)0)
1/3 is for repulsive

obstacles [15]. As proposed by Seeger [16], the applied re-

solved shear stress is separated into a thermal component τ∗

and an athermal component:

τ = τ∗ + αGb
√

#tot (12)

where α is the dislocation interaction coefficient. Using

Orowan’s equation, the resulting resolved shear rate iswritten

as:

γ̇ = fmob #sgl bvg (13)

where fmob is the fraction of mobile single dislocations.

Eqs. (11)–(13) couple dislocation structure to deforma-

tion resistance. In connection with the evolution Eqs. (6)

and (7) the absolute magnitude of dislocation densities thus

results from the simulation. This important part in micro-

structure-based modelling is missing from the earlier works

[9] and [10] where, e.g., the dipole height distribution

needs to be scaled by an experimentally determined #dip at

given σ.
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of χ follows:2

χ̇ = 2γ̇
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The corresponding evolution of the density of single disloca-

tions is given by
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(7)

with dislocation generation being described by the ratioΛ of

slipped area per generated dislocation length,

Λ = kΛ#−0.5
tot (8)

which is assumed proportional to the mean dislocation spac-

ing (kΛ: fitting constant).

In order to track the evolution of χ numerically, the dis-

tribution of dipole heights h is discretized into Ndip intervals

subdividing the range of dipole stability (Eq. (4)) evenly on a

logarithmic scale. For each interval i∈ [1; Ndip], the specific
density χi is set constant in between the respective lower (l)

and upper (u) bounds:
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(

ĥ

hspon

) i
Ndip

= hsponδ
i

Ndip . (9b)

The discretized forms of Eqs. (6) and (7) necessary for nu-

merical calculations are given in Appendix A.

2.2. Dislocation kinetics

The expressions for the velocities of dislocation climb and

glide were derived in detail in [13]. The average climb ve-

locity of extended dipole constituents [14] within the height

interval i results as

vc = A′

2π(1− ν)
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exp
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kBT
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+ 2
Ng − 1
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Λb#tot
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GkBT

b

hui − hli
ln δ (10)

where A′ is the order 103, γSF the stacking-fault energy, and
DSD is the coefficient of self-diffusion. The term in square

2 Damping factor of 0.9 for dipole decomposition was introduced to avoid

singularity.

brackets represents the line concentration of jogs along a dis-

location as sum of the concentrations of thermal jogs and

of jogs resulting from dislocation intersections. The aver-

age velocity vg of gliding dislocations is based on the ther-

mally activated passage of obstacles posed by the dislocation

forest:

vg = νg
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exp
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where νg is the attempt frequency, *G0 the activa-

tion energy, *x the width of thermal obstacle, )20 =
[(#sgl + #dip/2)(Ng − 1)/Ng]

−1 the average slipped area per

thermal obstacle, and ) = )0(Gb/τ∗)0)
1/3 is for repulsive

obstacles [15]. As proposed by Seeger [16], the applied re-

solved shear stress is separated into a thermal component τ∗

and an athermal component:

τ = τ∗ + αGb
√

#tot (12)

where α is the dislocation interaction coefficient. Using

Orowan’s equation, the resulting resolved shear rate iswritten

as:

γ̇ = fmob #sgl bvg (13)

where fmob is the fraction of mobile single dislocations.

Eqs. (11)–(13) couple dislocation structure to deforma-

tion resistance. In connection with the evolution Eqs. (6)

and (7) the absolute magnitude of dislocation densities thus

results from the simulation. This important part in micro-

structure-based modelling is missing from the earlier works

[9] and [10] where, e.g., the dipole height distribution

needs to be scaled by an experimentally determined #dip at

given σ.



recollection of part III

check out the source code...

constitutive.f90


