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plastic deformation of monocrystals

• dislocation slip

• mechanical twinning

• displacive phase transformation

inherently anisotropic due to underlying mechanisms:
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dislocation – dislocation interaction
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plastic deformation of monocrystals

many of these models, the stress required to nucleate a twin
has been determined from the stress required to operate a
twin source such as a pileup, Lomer–Cottrell lock, etc.
[9,12]. Typically, these models predict that the twinning
stress depends only on the intrinsic stacking fault energy
(SFE) cisf – for example, through a phenomenological rela-
tion of the form [12] scrit ! Kcisf/jbtwinj with fitting param-
eter K to ensure good correlation with a limited range of
experimental data. However, as shown recently, the energy
pathways associated with twinning – the generalized planar
fault energy (GPFE)–involve energy barriers which twin-
ning partials must overcome during twin nucleation [15–
17]; see Fig. 2a. The qualitative dependence of deformation
twinning tendency on GPFE has been predicted in fcc met-
als [15,16,18] and alloys [17,19]. However, a quantitative
dependence of twinning stress on GPFE has not been
established yet; nor has the role of GPFE in classical dislo-
cation-based, heterogeneous twinning stress models been
accounted for. The twinnability approach [15,16], for
example, provides only a qualitative measure of twinning
propensity, namely, whether an fcc metal will twin or
not. This approach does not address the twin nucleation
issue, namely, at what stress an fcc metal will twin. The
present work, on the other hand, provides a theory, free
from adjustable parameters, that leads to a quantitative
prediction of twinning stress.

In this paper, we incorporate the twin-energy pathways
(GPFE) into a dislocation-based mechanistic model to pre-
dict the twinning stress in fcc metals (here for Ag, Al, Au,
Cu, Ni, Pb, Pd and Pt). Of these, Al, Pd and Pt typically
undergo cross-slip instead of twinning (Al has been
reported to twin at crack tips [20] due to high stress concen-
tration and is discussed later), while twinning in conven-
tional Ni has been reported only at high stresses just
prior to fracture [3,21]. As will be seen later, our model

quantitatively predicts these differing deformation behav-
iors. Twinning has also been observed in nanocrystalline
(10–50 nm grain size) Al [22,23] and Pd [24], but the
observed twinning stresses are close to ‘‘ideal’’ stresses

Fig. 1. The 12-layer supercell used for GPFE calculations: (from left to right) perfect fcc, one-layer (intrinsic) fault, two-layer fault and three-layer (twin)
fault. The arrows indicate the successive {111} planes on which Shockley partials with Burgers vector bp = a0Æ112æ/6 are passed. The translation vector T3

maintains fcc stacking between adjacent supercells.

Fig. 2. (a) VASP–PAW GPFE for pure Pb vs. normalized shear
displacement on successive {111} planes: twin-energy converges immedi-
ately after the third layer marking the start of twin growth. (b) The three-
layer twin nucleus bounded by an array of partial dislocations (designated
by Thompson tetrahedron in inset).
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propensity, namely, whether an fcc metal will twin or
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prediction of twinning stress.
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undergo cross-slip instead of twinning (Al has been
reported to twin at crack tips [20] due to high stress concen-
tration and is discussed later), while twinning in conven-
tional Ni has been reported only at high stresses just
prior to fracture [3,21]. As will be seen later, our model
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Cu, Ni, Pb, Pd and Pt). Of these, Al, Pd and Pt typically
undergo cross-slip instead of twinning (Al has been
reported to twin at crack tips [20] due to high stress concen-
tration and is discussed later), while twinning in conven-
tional Ni has been reported only at high stresses just
prior to fracture [3,21]. As will be seen later, our model
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PART II

Background in
Continuum Mechanics



basic kinematics

e3

e2e1

Euclidean 
point space E

point X in B at

body B 
occupying 
region B

x = φ(X , t)
X = Φ(x, t)



basic kinematics

define a referential 
configuration:

referential

current

X = π(X )
X = Π(X)

x = φ(Π(X), t) = ψ(X, t)
X = π(Φ(x, t)) = Ψ(x, t)

such that:

x

X
ψ(X, t)

Ψ(x, t)



basic kinematics

local expansion of deformation map:

x = ψ(X) + Gradψ(X)|X0 (X −X0) + o(X −X0)
= x0 + Gradx|x0 (X −X0) + o(X −X0)

dx = GradxdX + o(dX)
dx = FdX

F(X, t) = (Gradψ)(X, t)
F−1(x, t) = (grad Ψ)(x, t)

deformation gradient:



basic kinematics

strain measures

X x
dx

dy
dY

dX θΘ

F



basic kinematics

strain measures: change of length dx = l ds

dX = LdS

l ds · l ds = FLdS · FLdS(
ds

dS

)2

= FL · FL

= L · FTFL

= L · CL

LdS · LdS = F−1l ds · F−1l ds(
ds

dS

)2

=
(
F−1l · F−1l

)−1

=
(
l · F−TF−1L

)−1

=
(
l ·

(
FFT

)−1
L

)−1

=
(
l · B−1l

)−1

right Cauchy–
Green tensor

left Cauchy–
Green tensor



basic kinematics

strain measures: change of angle dy = m du

dY = MdU

cos θ = l · m

= FL
dS

ds
· FM

dU

du

= L · CM
dS

ds

dU

du



basic kinematics

polar decomposition of deformation gradient

F = RU = VR

where
R: rotation (proper orthogonal tensor) and 
U, V: symmetric, positive definite (stretch) 
tensor



basic kinematics

spectral decomposition of U, V

eigenvalues

p1

p2

λ1, λ2, λ3

eigenvectors

p1, p2, p3 for U
q1, q2, q3 for V

U =
3∑

i=1

λi pi ⊗ pi

V =
3∑

i=1

λi qi ⊗ qi

q1

q2

qi = Rp1



basic kinematics

relation between polar decomposition 
and Cauchy–Green tensors

F = RU = VR

B = FFT

= (VR)(VR)T

= VRRTVT

= V2

C = FTF
= (RU)T(RU)
= UTRTRU
= U2



basic kinematics

interpretation of Cauchy–Green tensors

Cαβ is the product of 
stretches along 
base vectors
and the scalar 
product eα · eβ

Eα, Eβ



basic kinematics

relation of right Cauchy–Green tensor to 
small strain

C = FTF
= (I + Gradu)T (I + Gradu)
= I + Gradu + (Gradu)T + Gradu (Gradu)T

≈ I + (Gradu)sym

= I + 2ε
E =

1
2
(C− I)

=
1
2
(U2 − I)

=
1
2
(FTF− I)



basic kinematics

velocity gradient L = grad v

= grad ẋ

= (Grad ẋ)F−1

=
(

Grad
[

∂

∂t
x

])
F−1

=
(

∂

∂t
[Gradx]

)
F−1

=
(

∂

∂t
F

)
F−1

= Ḟ F−1



basic kinematics

material time 
derivatives ∂

∂t
(dx) =

∂

∂t
(FdX)

=
∂F
∂t

dX + F
∂dX

∂t
= ḞdX

= LFdX

(dx)̇ = Ldx



basic kinematics

∂

∂t
(dx) = Ldx

∂

∂t
(l ds) = L l ds

∂l

∂t
ds + l

∂ds

∂t
= L l ds

l · l̇ ds + l · l (ds)̇ = l · L l ds

(ds)̇ = l · L l ds

material time 
derivatives



basic kinematics

l̇ ds + l (ds)̇ = L l ds

l̇ ds + l (l · L l ds) = L l ds

l̇ = L l − (l · L l) l

material time 
derivatives



basic kinematics

material time 
derivatives

∂

∂t
(cos θ) =

∂

∂t
(l · m)

− sin θ θ̇ = l̇ · m + l · ṁ
θ̇ = |l ×m|−1

[
{l · Ll + m · Lm} (l · m)− l ·

{(
L + LT

)
m

}]



basic kinematics

stretching and spin

F specifies changes of size and shape while 
L describes the rate of those changes

additive decomposition of L

L =
1
2

(
L + LT

)
+

1
2

(
L− LT

)

= D + W

symmetric skew-symmetric



basic kinematics

stretching and spin

interpretation of D and W using L = úFF ! 1

F = RU = VR

! L = ( RU )ú(RU )−1

= ( úRU + R úU )(U−1R−1)

= úRR T + R úUU −1R T

RR T = I
úRR T + R úR T = 0

úRR T +
!

úRR T
" T

= 0



basic kinematics

stretching and spin

! L = úRR T + R úUU ! 1R T

D =
1
2

R
!

úUU ! 1 + U ! 1 úU
"

R T

W =
1
2

R
!

úUU ! 1 ! U ! 1 úU
"

R T + úRR T

interpretation of D and W using L = úFF ! 1

F = RU = VR



basic kinematics

stretching and spin

suppose reference configuration 
equals current configuration: F = R = U (= V ) = I

rate of change of stretch ... 

D =
1
2

R
!

úUU ! 1 + U ! 1 úU
"

R T = úU 0

W =
1
2

R
!

úUU ! 1 ! U ! 1 úU
"

R T + úRR T = úR 0

rate of change of rotation while passing through current configuration 



basic kinematics

geometric interpretation of stretching and spin 
around point in current configuration

(ds)ú
ds

= l áL l

= l áD l

e3

e2e1

Dii : rate of extension 
along base vector ei



basic kinematics

geometric interpretation of stretching and spin 
around point in current configuration

Dij : half the rate of decrease 
in angle between base vectors 
ei and ej

ú! = |l ! m|! 1

!
{ l áL l + m áLm} (l ám) " l á

"#
L + L T $

m
%&

with l ám = 0

# "
1
2

ú! = l áD m e3

e2e1



basic kinematics

geometric interpretation of stretching and spin 
around point in current configuration

spectral decomposition of D results in 
three principal stretchings vi and their 
respective (orthogonal) axes ri

rate of angular change is zero, thus 
principal axes perform (rigid) rotation 



basic kinematics

geometric interpretation of stretching and spin 
around point in current configuration

principal axes ri perform (rigid) rotation 

úl = L l ! (l áL l) l

" úr i = ( D + W ) r i ! (r i áD r i ) r i

= ! i r i + W r i ! (r i á! i r i ) r i

= W r i

= w # r i



equilibrium

! 11
! 21

! 31

! 32

! 33

! 12

! 13

! 22

! 23t(n ) = ! n

Cauchy stress tensor



equilibrium

! 11
! 21

! 31

! 32

! 33

! 12

! 13

! 22

! 23

angular momentum balance

! T = !



equilibrium

e3

e2e1

da

x

linear momentum balance

b

nt(n )

region R in 
current 
configuration

d
dt

!

R
! úx dv =

!

R
! bdv +

!

! R
t(n ) da



equilibrium

e3

e2e1

da

x

linear momentum balance

b

nt(n )

region R in 
current 
configuration

d
dt

!

R
! úx dv =

!

R
! bdv +

!

! R
t(n ) da

!

R
div ! dv = 0



stress measures

Cauchy

first Piola–Kirchhoff

second Piola–Kirchhoff

!

P = J ! F ! T = F S

S = J F! 1 ! F ! T



internal power

Pint =
!

v
! : L dv =

!

v
! : D dv

=
!

V
P : úF dV

=
!

V
S : úE dV

A : (BC ) = ( B T A ) : C = ( AC T ) : B useful for derivation



finite strain plasticity

X

mi

ni

x

Fp Fe
Reference
configuration

Current
configuration

Intermediate (or relaxed)
configuration    

F(x)

Infinitesimal 
neighborhood of x

y(x)

Fp F !

F



finite strain plasticity

F = F! Fp !" F ! = F F p " 1
multiplicative 
decomposition of 
deformation gradient



finite strain plasticity

F = F! Fp !" F ! = F F p " 1
multiplicative 
decomposition of 
deformation gradient

L p = úFpFp ! 1 !" úFp = L pFpplastic velocity 
gradient



finite strain plasticity

F = F! Fp !" F ! = F F p " 1
multiplicative 
decomposition of 
deformation gradient

elastic Green’s 
Lagrangian strain E =

1
2

!
F ! T F ! ! I

"

L p = úFpFp ! 1 !" úFp = L pFpplastic velocity 
gradient



finite strain plasticity

F = F! Fp !" F ! = F F p " 1
multiplicative 
decomposition of 
deformation gradient

elastic Green’s 
Lagrangian strain E =

1
2

!
F ! T F ! ! I

"

S = C : E =
1
2

C :
!

Fp ! T FT F F p ! 1 ! I
"work-conjugate 

second Piola–
Kirchhoff stress

L p = úFpFp ! 1 !" úFp = L pFpplastic velocity 
gradient



finite strain plasticity

úFp =
Fp(! ) ! Fp(t)

! t
= L p(! )Fp(! )

fully-implicit formulation of 
rate of change of plastic 
deformation gradient

! = t + ! t



finite strain plasticity

úFp =
Fp(! ) ! Fp(t)

! t
= L p(! )Fp(! )

fully-implicit formulation of 
rate of change of plastic 
deformation gradient

! = t + ! t

Fp ! 1(! ) = Fp ! 1(t) [I ! ! t L p(! )]

Fp ! T (! ) =
!
I ! ! t L p T (! )

"
Fp ! T (t)

after rearranging



finite strain plasticity

Fp ! 1(! ) = Fp ! 1(t) [I ! ! t L p(! )]

Fp ! T (! ) =
!
I ! ! t L p T (! )

"
Fp ! T (t)

with

S(! ) =
1
2

C :

!
"""#

"""$

%
I ! ! t L p T (! )

&

' () *
B T

Fp ! T (t)FT (! )F(! ) Fp ! 1(t)
' () *

A

[I ! ! t L p(! )]
' () *

B

! I

+
""",

"""-

S = C : E =
1
2

C :
!

Fp ! T FT F F p ! 1 ! I
"

combination of



finite strain plasticity

S(! ) L p(! )

Fp(! )F ! (! )

F ! = F F p " 1

úFp = L p FpS =
1
2

C : E

material 
constitutive 

law

elasto-plastic 
consistency



finite strain plasticity

depends on stress S and 
internal state variables s

L p(! ) = L p(S, s)

ús(! ) = ús(S, s)

material 
constitutive 

law



finite strain plasticity

two-level predictor–corrector scheme

guess evolution 
of internal state

converge elasto-plastic 
loop to desired tolerance

R n = L
!

p
n ! L p "

S
!

"
L
!

p
n

##

r n =
!
s
"

n ! s(t)
#

! ! t ús(S
"

n , s
"

n )



finite strain plasticity

residuum of 
elasto-plastic 
loop

Newton–
Raphson 
correction

R n = L
!

p
n ! L p "

S
!

"
L
!

p
n

##

L
!

p
n +1 = L

!
p
n !

"

# ! R n

! L
!

p

$
$
$
$
L
!

p
n

%

&

! 1

: R n



finite strain plasticity

! S
!

! L
!

p =

S
!

,L
!

p =
1
2

"
C :

#
B T A B ! I

$%
,L
!

p

=
1
2

&
C :

#
B T A B ! I

$
,L
!

p +
#
B T A B ! I

$
: C,L

!
p

'

=
1
2

C :
(

B T
,L
!

p A B + B T A B ,L
!

p

)

= !
! t
2

C :
(

L
!

pT
,L
!

p A B + B T A L
!

p
,L
!

p

)

! R ij

! L
!

p
kl

=
! L

!
p

ij

! L
!

p
kl

!
! L p

ij

! S
! mn

! S
! mn

! L
!

p
kl

= " ik " jl !
! L p

ij

! S
! mn

! S
! mn

! L
!

p
kl



finite strain plasticity

! S
!

! L
!

p =

S
!

,L
!

p =
1
2

"
C :

#
B T A B ! I

$%
,L
!

p

=
1
2

&
C :

#
B T A B ! I

$
,L
!

p +
#
B T A B ! I

$
: C,L

!
p

'

=
1
2

C :
(

B T
,L
!

p A B + B T A B ,L
!

p

)

= !
! t
2

C :
(

L
!

pT
,L
!

p A B + B T A L
!

p
,L
!

p

)



finite strain plasticity

! S
!

! L
!

p =

S
!

,L
!

p =
1
2

"
C :

#
B T A B ! I

$%
,L
!

p

=
1
2

&
C :

#
B T A B ! I

$
,L
!

p +
#
B T A B ! I

$
: C,L

!
p

'

=
1
2

C :
(

B T
,L
!

p A B + B T A B ,L
!

p

)

= !
! t
2

C :
(

L
!

pT
,L
!

p A B + B T A L
!

p
,L
!

p

)

! S
!

ij

! L
!

p
kl

= !
! t
2

Cijmn

"
! L

!
pT

mq

! L
!

p
kl

A qp B pn + B T
mp A pq

! L
!

p
qn

! L
!

p
kl

#

= !
! t
2

Cijmn
$
"qk "ml (AB )qn + ( B T A )mq "qk "nl

%

= !
! t
2

$
Cijln (AB )kn + Cijml (B T A )mk

%


